Assessment Schedule - 2008

Calculus: Sketch graphs of conic sections and write equations related to conic sections (90639)

Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Sketch graphs of conic sections and write equations related to conic sections.	ONE	Ellipse: Centre (0,0)		Ellipse through (-4,0), (4,0), (0,-8), (0,8). Centre and intercepts indicated by sketch.	Four of code A including at least one each of code A1 and code A2 or three of code A and one of code M.
		TIV.O	-10	A1		
Achievement		TWO	Circle: Centre (0,4), radius 4 Hyperbola:	A1	Circle through (0,0), (-4,4), (4,4) and (0,8). Centre and intercepts indicated by sketch. Hyperbola Intercepts at (-2,0)	
				A1	and $(2,0)$. Asymptotes $y = 3x$ and $y = -3x$. Intercepts and asymptotes indicated by sketch.	
		FOUR (a)	$\frac{(x-3)^2}{9} + \frac{(y-5)^2}{16} = 1$	A2	Or equivalent.	
		(b)	$y^2 = 2(x+8)$	A2	Or equivalent.	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
with Merit	Solve problems involving conic sections.	FIVE SIX	$\frac{2x}{100} + \frac{2y\frac{dy}{dx}}{25} = 0$ $\frac{dy}{dx} = \frac{-2x}{100} \times \frac{25}{2y}$ $= \frac{-x}{4y} = \frac{3}{8}$ $y = \frac{3}{8}x + 6\frac{1}{4}$ $\frac{x^2}{25} - \frac{y}{b^2} = 1$ $x = \sqrt{425}$	A / M	Must have correct derivative Or equivalent.	Merit: Achievement plus Two of Code M OR Three of Code M.
Achievement with Merit			When $y = 80$ $\frac{425}{25} - \frac{80^2}{b^2} = 1$ $b = 20$ Hence $\frac{x^2}{25} - \frac{y^2}{400} = 1$ $\frac{x^2}{25} - \frac{3600}{400} = 1$ $\frac{x^2}{25} = 10$ $x = \sqrt{250}$ $x = 15.81 \text{ cm}$	A2	Correct equation of conic section. Or equivalent. Units not required.	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
	Solve more complex conic section problems.	SEVEN	For ellipse $\frac{x^2}{400} + \frac{y^2}{100} = 1$ $\frac{2x}{400} + \frac{2y}{100} \times \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-x}{4y} = m$	A2	CAO Is NS	Excellence: Merit plus Code E.
th Excellence			For line y = mx + 25 $\frac{dy}{dx} = \frac{y - 25}{x}$ $\frac{x}{4y} = \frac{25 - y}{x}$ $x^2 = 100y - 4y^2$ From ellipse $x^2 = 400 - 4y^2$ $400 - 4y^2 = 100y - 4y^2$ 400 = 100y y = height = 4 m	M E	Or equivalent.	OR Two of code E.
Achievement with Excellence		EIGHT	Translate so (1,2) becomes (0,2) Circle was $(x+3)^2 + y^2 = 4$ now $(x+4)^2 + y^2 = 4$ or $x^2 + 8x + 16 + y^2 = 4$ and lines through point (0,2) are $y = mx + 2$ At intersection $x^2 + 8x + 16 + (mx + 2)^2 = 4$ $x^2(m^2+1) + x(4m+8) + 16 = 0$ If tangent $b^2 - 4ac = 0$ $(4m+8)^2 - 4(m^2+1) \times 16 = 0$ $64m - 48m^2 = 0$ $m = 0$ or $m = \frac{4}{3}$ $y = 2$ or $y - 2 = \frac{4}{3}(x-1)$ 3y - 4x - 2 = 0	M E	Accept any valid method. Accept minor arithmetic error. Or equivalent.	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Sketch graphs of conic sections and write equations related to conic sections.	Solve problems involving conic sections.	Solve more complex conic section problems.
$4 \times A$ including at least $1 \times A1$ and $1 \times A2$	Achievement plus $2 \times M$ OR	Achievement with Merit plus $1 \times E$ OR
OR 3 x A and 1 x M	$3 \times M$	2×E

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (\land) .
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- **CAWW** Correct Answer, Wrong Working. (=N)
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.
- Slip transposition error, grade awarded as if response is correct.